On Shintani’s ray class invariant for totally real number fields

نویسنده

  • Shuji Yamamoto
چکیده

We introduce a ray class invariant X(C) for a totally real field, following Shintani’s work in the real quadratic case. We prove a factorization formula X(C) = X1(C) · · ·Xn(C) where each Xi(C) corresponds to a real place (Theorem 3.5). Although this factorization depends a priori on some choices (especially on a cone decomposition), we can show that it is actually independent of these choices (Theorem 4.9). Finally, we describe the behavior of Xi(C) when the signature of C at a real place is changed (Theorem 5.1). This last result is also interpreted into an interesting behavior of the derivative L′(0, χ) of L-functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Kronecker limit formulas for real quadratic fields

Let ζ(s,C) be the partial zeta function attached to a ray class C of a real quadratic field. We study this zeta function at s = 1 and s = 0, combining some ideas and methods due to Zagier and Shintani. The main results are (1) a generalization of Zagier’s formula for the constant term of the Laurent expansion at s = 1, (2) some expressions for the value and the first derivative at s = 0, relate...

متن کامل

A Kronecker Limit Formula for Totally Real Fields and Arithmetic Applications

We establish a Kronecker limit formula for the zeta function ζF (s,A) of a wide ideal class A of a totally real number field F of degree n. This formula relates the constant term in the Laurent expansion of ζF (s,A) at s = 1 to a toric integral of a SLn(Z)-invariant function logG(Z) along a Heegner cycle in the symmetric space of GLn(R). We give several applications of this formula to algebraic...

متن کامل

Rationality Problems for K-theory and Chern-simons Invariants of Hyperbolic 3-manifolds

This paper makes certain observations regarding some conjectures of Milnor and Ramakrishnan in hyperbolic geometry and algebraic K-theory. As a consequence of our observations, we obtain new results and conjectures regarding the rationality and irrationality of Chern-Simons invariants of hyperbolic 3-manifolds. In this paper, by a hyperbolic 3-manifold, we shall mean a complete, oriented hyperb...

متن کامل

Problems for Chern - Simons Invariants

This paper makes certain observations regarding some conjectures of Milnor and Ramakrishnan in hyperbolic geometry and algebraic K-theory. As a consequence of our observations, we obtain new results and conjectures regarding the rationality and irrationality of Chern-Simons invariants of hyperbolic 3-manifolds. In this paper, by a hyperbolic 3-manifold, we shall mean a complete, oriented hyperb...

متن کامل

Stark's Conjectures and Hilbert's Twelfth Problem

We give a constructive proof of a theorem given in [Tate 84] which states that (under Stark’s Conjecture) the field generated over a totally real field K by the Stark units contains the maximal real Abelian extension of K. As a direct application of this proof, we show how one can compute explicitly real Abelian extensions of K. We give two examples. In a series of important papers [Stark 71, S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008